Linearized two-hydrophone localization of a pulsed acoustic source in the presence of refraction: Theory and simulations.

نویسندگان

  • E K Skarsoulis
  • Stan E Dosso
چکیده

This paper develops an efficient three-dimensional localization method for transient acoustic sources, with uncertainty estimation, based on time differences between direct and surface-reflected arrivals at two hydrophones. The localization method accounts for refraction caused by a depth-dependent sound-speed profile using a ray-theoretic approach for calculating eigenray travel times and partial derivatives. Further, the method provides localization error estimates accounting for uncertainties of the arrival times and hydrophone locations, as well as for depth-dependent uncertainties in the sound-speed profile. In the first of two steps, source depth and range to each hydrophone are estimated using an iterative, linearized Gauss-Markov inversion scheme. In the second step, the estimated source ranges are combined with the hydrophone locations to obtain the source location in the horizontal. Localization performance is analyzed in a simulation study, and the linearized localization estimates and uncertainties are validated by comparison with a fully nonlinear (but numerically intensive) Markov-chain Monte Carlo inversion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic propagation analysis in the front of saline water mass in the Gulf of Aden

Background and Objectives: Influence of water mass on sound propagation in the Gulf of Aden underwater acoustics used for communication, navigation and identification of objects by both humans and marine mammals and for investigating the detrimental effects of anthropogenic activities (e.g. pile driving, seismic survey and ships) on marine animals. The Gulf of Aden presents a unique ecosystem t...

متن کامل

Three Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors

Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...

متن کامل

Investigation of an angular spectrum approach for pulsed ultrasound fields.

An Angular Spectrum Approach (ASA) is formulated and employed to simulate linear pulsed ultrasound fields for high bandwidth signals. A geometrically focused piston transducer is used as the acoustic source. Signals are cross-correlated to find the true sound speed during the measurement to make the simulated and measured pulses in phase for comparisons. The calculated sound speed in the measur...

متن کامل

Cross correlation matched field localization for unknown emitted signal waveform using two-hydrophone

Source localization is a crucial issue in underwater acoustics. Traditional matched field processing (MFP) use large vertical arrays to locate an underwater acoustic target. However, the use of the large arrays not only increases equipment and computational cost but also some problems such as element failures and array title degrades the localization performance. In this paper, the matched fiel...

متن کامل

Implementation of an adaptive burst DQPSK receiver over shallow water acoustic channel

In an environment such as underwater channel where placing test equipments are difficult to handle, it is much practical to have hardware simulators to examine suitably designed transceivers (transmitter/receiver). The simulators of this kind will then allow researchers to observe their intentions and carry out repetitive tests to find suitable digital coding/decoding algorithms. In this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 138 4  شماره 

صفحات  -

تاریخ انتشار 2015